Part Number Hot Search : 
GP1006 QXX25LH5 MC2836 FN2472 TLE4263 2SD613 DTC114 LP251
Product Description
Full Text Search
 

To Download RF1K49086 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Power MOSFET Data Sheets
SEMICONDUCTOR
RF1K49086
3.5A, 30V, Avalanche Rated, Dual N-Channel LittleFETTM Enhancement Mode Power MOSFET
Description
The RF1K49086 Dual N-Channel power MOSFET is manufactured using an advanced MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits, gives optimum utilization of silicon, resulting in outstanding performance. It is designed for use in applications such as switching regulators, switching converters, motor drivers, relay drivers, and low voltage bus switches. This device can be operated directly from integrated circuits. Formerly developmental type TA49086.
January 1997
Features
* 3.5A, 30V * rDS(ON) = 0.060 * Temperature Compensating PSPICE Model * Peak Current vs Pulse Width Curve * UIS Rating Curve
Ordering Information
PART NUMBER RF1K49086 PACKAGE MS-012AA BRAND RF1K49086
Symbol
NOTE: When ordering, use the entire part number. For ordering in tape and reel, add the suffix 96 to the part number, i.e. RF1K4908696.
D1(8) D1(7)
S1(1) G1(2)
D2(6) D2(5)
S2(3) G2(4)
Packaging
JEDEC MS-012AA
BRANDING DASH
5 1 2 3 4
LittleFETTM is a trademark of Harris Corporation
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures. Copyright
(c) Harris Corporation 1997
File Number
3986.4
5-57
RF1K49086
Absolute Maximum Ratings
TA = 25oC Unless Otherwise Specified RF1K49086 30 30 20 3.5 Refer to Peak Current Curve Refer to UIS Curve 2 0.016 -55 to 150 260 UNITS V V V A
Drain to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (Pulse Width = 5s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation TA = 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TSTG, TJ Soldering Temperature of Leads for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
W W/oC oC oC
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
Electrical Specifications
PARAMETERS
TA = 25oC, Unless Otherwise Specified SYMBOL BVDSS VGS(TH) IDSS TEST CONDITIONS ID = 250A, VGS = 0V VGS = VDS, ID = 250A VDS = 30V, VGS = 0V VGS = 20V ID = 3.5A VGS = 10V VGS = 4.5V TA = 25oC TA = 150oC MIN 30 1 VGS = 0V to 20V VGS = 0V to 10V VGS = 0V to 2V VDS = 25V, VGS = 0V, f = 1MHz VDD = 24V, ID = 3.5A, RL = 6.86 Pulse Width = 1s Device mounted on FR-4 material TYP 10 30 60 45 35 13 2.3 575 275 100 MAX 3 1 50 100 0.060 0.132 50 130 45 17 2.9 62.5 UNITS V V A A nA ns ns ns ns ns ns nC nC nC pF pF pF
oC/W
Drain to Source Breakdown Voltage Gate Threshold Voltage Zero Gate Voltage Drain Current
Gate to Source Leakage Current On Resistance
IGSS rDS(ON)
Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time Total Gate Charge Gate Charge at 10V Threshold Gate Charge Input Capacitance Output Capacitance Reverse Transfer Capacitance Thermal Resistance Junction-to-Ambient
tON td(ON) tr td(OFF) tf tOFF Qg(TOT) Qg(10) Qg(TH) CISS COSS CRSS RJA
VDD = 15V, ID = 3.5A, RL = 4.29, VGS = 10V, RGS = 25
Source to Drain Diode Ratings and Specifications
PARAMETERS Forward Voltage Reverse Recovery Time SYMBOL VSD trr TEST CONDITIONS ISD = 3.5A ISD = 3.5A, dISD/dt = 100A/s MIN TYP MAX 1.25 45 UNITS V ns
5-58
RF1K49086 Typical Performance Curves
1.2 POWER DISSIPATION MULTIPLIER 1.0 ID, DRAIN CURRENT (A) 0.8 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 25 125 50 75 100 TA , AMBIENT TEMPERATURE (oC) 150 0.0 25 75 100 125 50 TA, AMBIENT TEMPERATURE (oC) 150
0.6 0.4
0.2
FIGURE 1. NORMALIZED POWER DISSIPATION vs TEMPERATURE DERATING CURVE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs TEMPERATURE
10
ID, DRAIN CURRENT (A)
ZJA, NORMALIZED THERMAL IMPEDANCE
1
DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM
100
TJ = MAX RATED TA = 25oC
10
1
5ms 10ms 100ms
0.1
t1 t2 SINGLE PULSE NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJA x RJA + TA 103
0.1
OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) VDSS MAX = 30V
1s DC 100
0.01 10-3
10-2 10-1 100 101 102 t, RECTANGULAR PULSE DURATION (s)
0.01 0.1
1
10
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA
200 IDM, PEAK CURRENT CAPABILITY (A) 100 VGS = 10V
TA = 25oC
I
= I25
150 - TA 125
10 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION
IAS, AVALANCHE CURRENT (A)
FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS:
20 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 10
STARTING TJ = 25oC
STARTING TJ = 150oC 1 0.1 1 10 tAV, TIME IN AVALANCHE (ms) 100
1 10-5
10-4
10-3
10-2
10-1
100
101
t, PULSE WIDTH (s)
FIGURE 5. PEAK CURRENT CAPABILITY
NOTE: Refer to Harris Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
5-59
RF1K49086 Typical Performance Curves
25
(Continued)
ID, DRAIN CURRENT (A)
20
ID(ON), ON-STATE DRAIN CURRENT (A)
PULSE DURATION = 250s, TA = 25oC VGS = 5V VGS = 20V VGS = 10V VGS = 4.5V
25
20
PULSE TEST PULSE DURATION = 250s DUTY CYCLE = 0.5% MAX
25oC
VDD = 15V
-55oC 15
150oC
15
10
VGS = 4V
10
5 VGS = 3V 0 0 1.0 2.0 3.0 4.0 5.0
5
0 0.0
VDS, DRAIN TO SOURCE VOLTAGE (V)
1.5 3.0 4.5 6.0 VGS, GATE TO SOURCE VOLTAGE (V)
7.5
FIGURE 7. SATURATION CHARACTERISTICS
FIGURE 8. TRANSFER CHARACTERISTICS
250 rDS(ON), ON-STATE RESISTANCE (m)
PULSE DURATION = 250s, VDD = 15V ID = 7.0A ID = 3.5A ID = 1.75A NORMALIZED ON RESISTANCE
2.0 PULSE DURATION = 250s, VGS = 10V, ID = 3.5A 1.5
200
150
1.0
100 ID = 0.5A 50
0.5
0 3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
0.0 -80
-40
0
40
80
120
160
VGS , GATE TO SOURCE VOLTAGE (V)
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 9. rDS(ON) FOR VARYING CONDITIONS OF GATE VOLTAGE AND DRAIN CURRENT
FIGURE 10. NORMALIZED rDS(ON) vs JUNCTION TEMPERATURE
2.0 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = 250A
2.0 ID = 250A 1.5
THRESHOLD VOLTAGE
NORMALIZED GATE
1.5
1.0
1.0
0.5
0.5
0.0 -80
-40
0 40 80 120 TJ, JUNCTION TEMPERATURE (oC)
160
0.0 -80
-40
0 40 80 120 TJ , JUNCTION TEMPERATURE (oC)
160
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE
5-60
RF1K49086 Typical Performance Curves
1000 VGS = 0V, FREQUENCY (f) = 1MHz
(Continued)
30 VDS , DRAIN-SOURCE VOLTAGE (V)
10.0 VGS , GATE-SOURCE VOLTAGE (V)
C, CAPACITANCE (pF)
750 CISS 500 COSS 250 CRSS 0
22.5
VDD = BVDSS RL = 8.57 IG(REF) = 0.75mA VGS = 10V
VDD = BVDSS
7.5
15
5.0
7.5
PLATEAU VOLTAGES IN DESCENDING ORDER: VDD = BVDSS VDD = 0.75 BVDSS VDD = 0.50 BVDSS VDD = 0.25 BVDSS
2.5
0 0 5 10 15 20 VDS , DRAIN TO SOURCE VOLTAGE (V) 25
0 I G ( REF )
20 --------------------I G ( AC T )
I G ( REF )
t, TIME (s)
80 --------------------I G ( AC T )
FIGURE 13. CAPACITANCE vs VOLTAGE
NOTE: Refer to Harris Application Notes AN7254 and AN7260. FIGURE 14. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT
Test Circuits and Waveforms
VDS tP L IAS VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP RG
+
BVDSS VDS VDD
VDD -
0V
IL 0.01 tAV
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 16. UNCLAMPED ENERGY WAVEFORMS
VDD RL VDS VDS VGS
tON td(ON) tr 90%
tOFF td(OFF) tf 90%
10% 0V RGS DUT VGS 10% 50% PULSE WIDTH 90% 50%
10%
FIGURE 17. RESISTIVE SWITCHING TEST CIRCUIT
FIGURE 18. RESISTIVE SWITCHING WAVEFORMS
Soldering Precautions
5-61
RF1K49086
The soldering process creates a considerable thermal stress on any semiconductor component. The melting temperature of solder is higher than the maximum rated temperature of the device. The amount of time the device is heated to a high temperature should be minimized to assure device reliability. Therefore, the following precautions should always be observed in order to minimize the thermal stress to which the devices are subjected. 1. Always preheat the device. 2. The delta temperature between the preheat and soldering should always be less than 100oC. Failure to preheat the device can result in excessive thermal stress which can damage the device. 3. The maximum temperature gradient should be less than 5oC per second when changing from preheating to soldering. 4. The peak temperature in the soldering process should be at least 30oC higher than the melting point of the solder chosen. 5. The maximum soldering temperature and time must not exceed 260oC for 10 seconds on the leads and case of the device. 6. After soldering is complete, the device should be allowed to cool naturally for at least three minutes, as forced cooling will increase the temperature gradient and may result in latent failure due to mechanical stress. 7. During cooling, mechanical stress or shock should be avoided.
5-62
RF1K49086 Temperature Compensated PSPICE Model for the RF1K49086
SUBCKT RF1K49086 2 1 3 ;
CA 12 8 1.75e-9 CB 15 14 1.80e-9 CIN 6 8 1.20e-9 DBODY 7 5 DBDMOD DBREAK 5 11 DBKMOD DPLCAP 10 5 DPLCAPMOD EBREAK 11 7 17 18 33.29 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTO 20 6 18 8 1 IT 8 17 1 LDRAIN 2 5 1e-9 LGATE 1 9 1.233e-9 LSOURCE 3 7 0.452e-9 MOS1 16 6 8 8 MOSMOD M = 0.99 MOS2 16 21 8 8 MOSMOD M = 0.01 RBREAK 17 18 RBKMOD 1 RDRAIN 5 16 RDSMOD 1e-4 RGATE 9 20 1.83 RIN 6 8 1e9 RSOURCE 8 7 RDSMOD 13.5e-3 RVTO 18 19 RVTOMOD 1 S1A S1B S2A S2B 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD
S1A 12 S1B CA + EGS 6 8 EDS 13 8 14 13 13 CB + 14 5 8 IT
rev 12/15/94
DPLCAP 10 5 LDRAIN DRAIN 2
DBREAK RDRAIN
ESG + GATE 1 EVTO 9 20 + 18 8 LGATE RGATE
6 8 VTO + 6
11 16 EBREAK 17 18
+
DBODY
21 MOS1
MOS2
RIN
CIN 8 RSOURCE 7 LSOURCE 3 SOURCE
S2A 15 17 S2B RBREAK 18 RVTO 19 VBAT +
VBAT 8 19 DC 1 VTO 21 6 0.1 .MODEL DBDMOD D (IS = 2.50e-13 RS = 1.35e-2 TRS1 = 4.31e-5 TRS2 = 2.15e-5 CJO = 9.33e-10 TT = 2.08e-8) .MODEL DBKMOD D (RS = 1.14 TRS1 = 2.23e-3 TRS2 = -8.91e-6) .MODEL DPLCAPMOD D (CJO = 7.99e-10 IS = 1e-30 N = 10) .MODEL MOSMOD NMOS (VTO = 2.15 KP = 6.25 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL RBKMOD RES (TC1 = 7.74e-4 TC2 = 1.13e-6) .MODEL RDSMOD RES (TC1 = 4.5e-3 TC2 = -7.45e-7) .MODEL RVTOMOD RES (TC1 = -4.16e-3 TC2 = 2.16e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -7.15 VOFF= -5.15) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -5.15 VOFF= -7.15) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.6 VOFF= 2.4) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.4 VOFF= -2.6) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991.
5-63


▲Up To Search▲   

 
Price & Availability of RF1K49086

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X